Using continuous data on tumour measurements to improve inference in phase II cancer studies

نویسندگان

  • James Wason
  • Shaun Seaman
چکیده

In phase II cancer trials, tumour response is either the primary or an important secondary endpoint. Tumour response is a binary composite endpoint determined, according to the Response Evaluation Criteria in Solid Tumors, by (1) whether the percentage change in tumour size is greater than a prescribed threshold and (2) (binary) criteria such as whether a patient develops new lesions. Further binary criteria, such as death or serious toxicity, may be added to these criteria. The probability of tumour response (i.e. 'success' on the composite endpoint) would usually be estimated simply as the proportion of successes among patients. This approach uses the tumour size variable only through a discretised form, namely whether or not it is above the threshold. In this article, we propose a method that also estimates the probability of success but that gains precision by using the information on the undiscretised (i.e. continuous) tumour size variable. This approach can also be used to increase the power to detect a difference between the probabilities of success under two different treatments in a comparative trial. We demonstrate these increases in precision and power using simulated data. We also apply the method to real data from a phase II cancer trial and show that it results in a considerably narrower confidence interval for the probability of tumour response.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Breast Cancer Metastasis Using Fuzzy Models based on Data from Iranian Breast Cancer Patients

Introduction: The metastasis of breast cancer, the spread of cancer to different body parts, is considered as one of the most important factors responsible for the majority of deaths caused by breast cancer in women. Diagnosing the breast cancer metastasis at the earliest stages helps to choose the best treatment and improve the quality of life for patients. Method: In the present fundamental r...

متن کامل

Prediction of Breast Cancer Metastasis Using Fuzzy Models based on Data from Iranian Breast Cancer Patients

Introduction: The metastasis of breast cancer, the spread of cancer to different body parts, is considered as one of the most important factors responsible for the majority of deaths caused by breast cancer in women. Diagnosing the breast cancer metastasis at the earliest stages helps to choose the best treatment and improve the quality of life for patients. Method: In the present fundamental r...

متن کامل

Improving phase II oncology trials using best observed RECIST response as an endpoint by modelling continuous tumour measurements

In many phase II trials in solid tumours, patients are assessed using endpoints based on the Response Evaluation Criteria in Solid Tumours (RECIST) scale. Often, analyses are based on the response rate. This is the proportion of patients who have an observed tumour shrinkage above a predefined level and no new tumour lesions. The augmented binary method has been proposed to improve the precisio...

متن کامل

Breast Cancer Risk Assessment Using adaptive neuro-fuzzy inference system (ANFIS) and Subtractive Clustering Algorithm

Introduction: The adaptive neuro-fuzzy inference system (ANFIS) is a soft computing model based on neural network precision and fuzzy decision-making advantages, which can highly facilitate diagnostic modeling. In this study we used this model in breast cancer detection. Methodology: A set of 1,508 records on cancerous and non-cancerous participant’s risk factors was used.  First,...

متن کامل

Breast Cancer Risk Assessment Using adaptive neuro-fuzzy inference system (ANFIS) and Subtractive Clustering Algorithm

Introduction: The adaptive neuro-fuzzy inference system (ANFIS) is a soft computing model based on neural network precision and fuzzy decision-making advantages, which can highly facilitate diagnostic modeling. In this study we used this model in breast cancer detection. Methodology: A set of 1,508 records on cancerous and non-cancerous participant’s risk factors was used.  First,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2013